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Abstract. The magnetisation curve and the critical temperature of the square king lattice 
with a fluctuating exchange integral has been investigated using the Matsudaira method. 
Particular attention has been drawn to the re-entrant ferromagnetism phenomenon and it  
has been shown that i t  strongly depends on the accuracy of calculations with a tendency to 
disappear when the accuracy is improved. 

1. Introduction 

In recent years, great effort has been made to describe the so-calledre-entrant magnetism 
phenomenon in disordered magnetic systems. This phenomenon was observed experi- 
mentally (see, e.g., [l]) and since then a number of theoretical papers have appeared, 
where both two- and three-dimensional systems have been discussed. For instance, in a 
series of papers, diluted ferromagnetic and ferrimagnetic systems with a random 
exchange parameter have been considered [2-4]. A recent paper [5] in which a discussion 
of the re-entrant ferromagnetism resulting from one- and two-spin cluster models and 
from a finite-cluster approximation have been presented should also be noted. In all 
these papers the fluctuations of the exchange integral have been taken into account by 
means of the distribution function P(I , )  

W,)  = P W ,  - I )  + (1 - P ) W ,  - 1’) (1) 

which takes into account various possibilities. For instance, withp = 1 we get the perfect 
crystal case, while I’ = 0 corresponds to the case of a diluted ferromagnetic alloy. Then, 
if I > 0 and I’ > 0, all interactions are ferromagnetic; hence no frustration of the 
lattice appears. However, if I > 0 and I’ becomes negative, then some interactions are 
antiferromagnetic which can lead to frustration and, as a result, re-entrant fer- 
romagnetism can be expected. In all the above papers, calculations were made in the 
framework of the first-order Matsudaira approximation [6] where spin-correlation 
functions are neglected. The common result is that, for I’ negative, the phase diagrams 
predict the existence of re-entrant magnetism in some range of If-values. Some improve- 
ment in the above theory was achieved when the mean spin-correlation function was 
taken into account in the magnetisation equations [7]. The phase diagram with this 
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correction predicts a large reduction in the re-entrant phenomenon when compared with 
the predictions of theories with the correlations neglected (see figure 7 of [7]). 

Thus, it is seen that, when considering re-entrant magnetism, rather a high accuracy 
of the calculations is necessary. For this reason we have performed calculations using 
the Matsudaira method where in successive approximations the number of correlations 
is taken into account. This method, although rather sophisticated, gives better results 
than that in [7], which can be seen from a comparison of the kBTc/I-values for the perfect- 
crystal case. 

In the present paper we consider a square lattice with a distribution function of the 
type given by equation (1) but used in a particularly simple form: 

P(Zij) = 4[S(Zi j  - I - 6,) + 6(Z, - I + SI)]. (2) 
As a result, first of all the phase diagram has been obtained in various Matsudaira 
approximations. Then, also the magnetisation curve together with various correlations 
have been calculated. The main conclusion is that the range of 61 where re-entrant 
magnetism exists strongly reduces with increase in the calculation accuracy, and it is 
possible that in our model given by the distribution function (2) it does not occur at all. 

2. The theory 

We shall consider below the magnetisation curve and in particular the critical tem- 
perature of the disordered Ising ferromagnet with the fluctuating exchange integral 

I ,  = I +  AJ, (3) 
where A ,  is the random value. Thus, in the calculations, not only the thermodynamic 
but also the configurational averages should be found. This can be done by means of the 
method given, for example, in [SI, where some function F(Z,) is presented in the form 

F(I,)  = F(E)G(E - Z J , )  d E  (4) i 
and the Dirac delta function is given by the relation 

6 ( E  - Zl,)  = (i/2;z)[(E - I ,  + i&)-l - ( E  - IJ,  - i&)-'IE+,,+ 

where 

- IL,  = I + A ,  ( 5 )  

For further calculations the Handrich-Kaneyoshi approximation will be used, 
according to which we have 

(A?), = (A;)," (AY"), = 0 (7) 
with (. . .), denoting the configurational average. With the above approximation, one 
can find that 

( 6 ( E  - Z L j ) ) ,  = $[6(E  - I - 6,) + 6 ( E  - I + S,)] (8) 
where 
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Hence, the probability distribution function of the exchange integral is given by equation 
(2), and also from equation (4) we obtain the general relation 

( F ( l i j ) ) ,  = $[F(Z + S , )  + F(Z - S , ) ] .  (9) 

On the basis of equation (9) we shall consider below the square crystallographic lattice 
with S = 4. The magnetisation of such a ferromagnet in the framework of the Ising model 
can be found by means of the generalised Callen relation 

together with a similar relation for the two-spin correlation function 

To calculate the right-hand sides of (10) and (ll), the integral representation method 
will be used (for details see, e.g., [9, lo]), according to which equation (10) takes the 
form 

R = d o  tanh(po) - dtexp(iwt) ((exp (- i t 2  Zi,Sj))) (12) I 2n 'I j € i  r 

and a similar representation can be used for equation (11). For the Si = 21 case 
considered, we also have 

exp( -itZjjSj) = cos(tZij) - i s j  sin(tZ,). (13) 

As a result of the straightforward calculations of the right-hand sides of equations (10) 
and (11) in the integral representation, we finally obtain the following two relations: 

where the notation introduced in [6] has been used, and the coefficients X and Y are 
given by the equations 

X = -i d o  tanh(pw) - dt exp(iwt) (sin(tZ,)), (cos(tZi,))3 (16) I 2n 'I 
1 

Y = i dw tanh(pw) - I dt exp(iwt) (sin(tZ,))? (cos(tZ,)),. I 2n (17) 

In the above we have assumed that the functions of the different exchange integrals can 
be averaged independently. Thus, we see that we have obtained two equations enabling 
the magnetisation calculations to be made in the general form analogous to the Mat- 
sudaira equations, with the only difference that coefficients X and Y given by (16) and 
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Figure 1. kBTc/l  plotted against A (=6,/1) for 
the square crystallographic lattice: curve A,  curve 
obtained in the first-order Matsudaira approxi- 
mation;curveB,curveobtainedin the third-order 
approximation. The coordinates of the corre- 
sponding points are given in parentheses. In par- 
ticular, A ,  = 1.1218 and A 3  = 1.0163, where A ,  
and A 3  are the maximal values of A resulting from 
the first- and third-order approximation, respect- 
ively. 1 .0  0 5  

a 

(17) should be calculated now using equation (9). On the basis of this equation, one can 
obtain 

(COS(tZ,)), = cos(tZ) cos(td,) (18) 

(sin(tIf,)), = sin(tZ) cos(td,). (19) 

X = A + B  (20) 

Y = A - B  (21) 

Then, on the basis of (16) and (17), we have 

where 

A = 2-7{6 tanh(4PZ) + 4 tanh[4pZ(l + A/2)] + 4 tanh[4pZ(l - A/2)] 

+ tanh[4gZ(l + A)] + tanh[4PZ(l - A)]} 

+ tanh[2gZ(l + 2A)] + tanh[2@1(1 - 2A)]} 

(22) 

(23) 

B = 2-6{6 tanh(2pZ) + 4 tanh[2pZ(l + A)] + tanh[2PZ(l - A)] 

and A = dl/Z. It should be noted here that, for A = 0, equations (14) and (15) reduce 
to the corresponding Matsudaira equations. Further calculations are exactly the same 
as those given in [6] (with only the X and Y parameters changed) and hence we shall 
present below only the numerical results obtained for the disordered ferromagnet. 

3. Numerical results and discussion 

In figure 1 the phase diagrams of k,T,/Z against A obtained in the first- and third-order 
Matsudaira approximation are presented. 

As can be seen from this figure in the case of the first-order approximation there is 
rather a wide A range (1 < A < 1.1218) where two critical temperatures occur, which 
corresponds to the re-entrant phenomenon. On increase in the calculation accuracy this 
range is strongly reduced (1 < A < 1.04 in the approach in [7]  and 1 < A < 1.0163 
resulting from the third-order Matsudaira approximation). We have also carried out the 
calculations in the fourth-order approximation. As a result, only a small modification of 
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Figure 2. The magnetisation curves obtained in 
the first-order approximation for several values of 
A. For A = 1.01 and A = 1.1, re-entrant mag- 
netism is shown. 

Figure 3. The magnetisation curves obtained in 
the third-order approximation for several values 
of A. Re-entrant magnetism still appears for 
A = 1.01. 

1 0  

C 
0 5  

Figure 4. The nearest-neighbour 
L 1  spin-correlation function C, plot- 

ted against the reduced tempera- ,3.5 

----- _ _ _  - ture TIT,. resulting from the first- 
0 5  1 0  1 5  2 0  order approximation for the same 

--1 -, 

T/  i, A-value? as those in figure 2 

curve B in figure 1 has been obtained with re-entrant magnetism appearing for 1 < A < 
1.0133. Thus, because the results of the Matsudaira method are still far from the results 
of the exact Onsager model (see, e.g. ,  [ll]), it is possible that, in the ferromagnet 
considered here, the predicted re-entrant phenomenon is simply due to the calculation 
inaccuracy. 

It should be noted also that in all the Matsudaira approximations used here for the 
square lattice, we get T, = 0 for A = 1. 

The general behaviour of re-entrant magnetism discussed above is illustrated also in 
figures 2 and 3, where the magnetisation curves for several A-values resulting from first- 
and third-order approximations have been presented. As can be seen, the re-entrant 
magnetism in figure 3 is strongly reduced compared with that presented in figure 2 
(compare for instance the curves for A = 1.01). The same result is also shown in figures 
4 and 5 ,  where the nearest-neighbour spin-correlation functions C, obtained in the 
first- and third-order approximations for various values of A are shown. Note that the 
correlation C ,  is of primary importance, because it is closely related to the internal 
energy and to the magnetic contribution to the specific heat. 
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b.1 3 1  -- - 0 9 Figure 5 .  The same as in figure 4 but 
for the third-order approximation 
The A-values are the same as those 

-0 

0 5  1 0  1 5  2 0  in figure 3 
T /  T, 

The numerical results presented in figures 2-5 have shown that, for 0 < A < 1 and 
for T+O, both the magnetisation and the correlation function tend to unity. The 
particularly interesting shape of these curves have been obtained for A close to unity 
(e.g. A = 0.99), where abrupt decreases in the magnetisation and correlation functions 
in the low-temperature range are observed. This effect was not reported in other papers 
(see, e.g., [ 2 ] ) .  

From equations (22) and (23) we see that, for A = 1, we have no precisely defined 
X and Y functions in the T+ 0 limit; hence this point was excluded from numerical 
calculations. Nevertheless, calculations made for temperatures very close to zero predict 
no variation in both the magnetisation and the correlation functions. 

For A > 1 the magnetisation becomes equal to zero at low temperatures and re- 
entrant magnetism appears. Also in this A range a strong reduction in the correlation 
functions is observed. 

When comparing our results with the results obtained in [ 5 ] ,  first of all it should be 
mentioned that the parameter p in [ 5 ]  is equal to 0.5 in our considerations and the 
parameter a is related to our parameter A by the equation 

(1 - A)/(1 + A).  (24) 

Then, from the comparison of our figure 1 with figure 2 of [ 5 ] ,  it is seen that the 
results obtained in [5]  are in agreement with our results obtained in the first-order 
approximation. For instance our A,-value of 1.1218 corresponds to LY = -0.057 (see 
figures 2 and 3 of [SI fo rp  = 0.5). However, A 3  = 1.0163 corresonds to a = -0.008. 

Thus it is seen that in the third-order approximation, which is likely to be better 
than the first-order approximation, the range where re-entrant behaviour occurs is 
considerably reduced and hence the work in [ 5 ]  overestimates the occurrence of this 
phenomenon. The same tendency is observed when the fourth-order approximation is 
used. However, all the results of the fourth-order approximation are only slightly 
changed in comparison with the results given in this paper. It should also be remembered 
that the Matsudaira method produces results still far from the exact Onsager method 
and is therefore not too reliable for the re-entrant phenomenon. Moreover, as the 
accuracy of the calculations plays so important a role in the problems considered, 
other assumptions of the theory should also be improved. For instance the Handrich- 
Kaneyoshi distribution function should be substituted by a Gaussian distribution of 
exchange integrals. 

To conclude, this paper should not be regarded as a demonstration of the existence 
of a re-entrant phenomenon for certain parameters within a particular model. Rather it 
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serves to show that its occurrence is highly dependent on the accuracy of the calculation, 
and the tendency is for it to disappear altogether when the accuracy of a calculation is 
improved. 
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